From FA=BIL, I=ER, E=△B△tS=BmTl0d? Yes, I=Bml0dTR②.
A starts moving at the time t0 of Article B, with B=BmTt0? ③
At the same time, 123DE
t0=mgRT2(μcosθ+sinθ)d2l20B2m
(2) q=It0,I=Bml0dTR。
Q=mgT(μcosθ+sinθ)dBm。
(3) When the ab rod reaches the maximum speed vm, the magnetic induction intensity B=BmTt 1.
Current time? I=BmT(l0? l)d? BmTt 1dvmR
The force of the ab rod is balanced along the inclined plane direction, including
mgsinθ+μmgcosθ=BId
Solution, vm=l0? lt 1-mgT2R(sinθ? μcosθ)(dBmt 1)2
A:
(1) The time t0 when the AB rod starts to move is mgrt2 (μ cos θ+sin θ) d2l20b2m;
(2) Before the ab rod starts to move, the charge Q passing through the AB rod is MGT (μ cos θ+sin θ) DBM;
(3) 3) What is the maximum speed vm of the AB rod? lt 1-mgT2R(sinθ? μcosθ)(dBmt 1)2。