∴CE= 12AB=AE,
∫∠ACD = 90, f is the midpoint of line segment AD,
∴AF=CF= 12AD,
At △CEF and △AEF,
CF=AFEF=EFCE=AE,
∴△cef≌△aef(sss);
(2) the connection DE,
Points e and f are the midpoints of line segments AB and AD, respectively,
∴EF= 12BD,EF∥BC,
BD = 2CD,
∴EF=CD.
And ∵EF∨BC,
∴ quadrilateral CEFD is a parallelogram,
∴DE=CF,
CF = AF,
∴DE=AF.