Then ∠DFG =∠DCE∠DGF =∠ Dirk,
D is the midpoint of CF,
∴CD=DF,
At △DCE and △DFG,
∠DFG=∠DCE? DF=CD? ∠GDF=∠EDC? ,
∴△DCE≌△DFG(ASA),
∴EC=GF,
∫BFAF = Mn,
∴AFAB=nm+n,
∫FG∨BC,
∴△AFG∽△ABE,
∴AFAB=FGBE=nm+n,
∴beec=m+nn;
(2) Proof: If BE=2EC, then be: ec = 2,
According to (1), m+nn=2,
Solution: m=n,
Point f is the midpoint of AB,
AC = BC,
∴CF⊥AB.